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Silylenoids, RSiXM (X = halogen, M= alkali metal), are
important intermediates in many reactidnget, in contrast to the
extensively studied analogous carbenoid&; &M, ? they have been
little studied. Due to their high reactivity via self-condensation
o-elimination of MX producing reactive silylenésyery little is
known about their molecular structure. Such structural information
is important for understanding the intriguing multiple reactivity of
halosilylenoids toward nucleophilé§electrophiles;> and silylene
trapping agent$> An X-ray molecular structure is available only
for a dimeric form of a methoxysilylenoi®. Other known stable
silylenoids include thid®and halosilylenoid$for which, however,
there is no structural data.

In this paper we report the synthesis, the molecular and electronic
structure, and several reactions of the first isolated fluorosilylenoid
1, exhibiting atricoordinate silicon. Analogous stable carbenoids
have not been reported.

The fluorosilylenoidl was prepared in 40% yield by reaction
of fluorobromosilane2 with silyllithium 3 in THF (eq 1)% 1

R5SiLi (3)
(RyS,SIFBr —— b (RyS,SIFLIs3THE (1)
2 -R3SiBr 1 (40%)

R3Sl = t-BleMeSi

crystallizes at=30 °C from a 1:2 THF/hexane solution as yellow
crystals, and its molecular structure as determined by X-ray
crystallography is shown in Figure’1.

The X-ray molecular structure reveals tias a silylenoid with
a tricoordinate silicon and a lithium atom bonded to fluorine. The
Si1---Li distance is 3.21 A, significantly longer than that in THF
solvated lithiosilanes (2.642.77 A)8 indicating weak or no Si
Li bonding. Sil inl is strongly pyramidal; the sum of the bond
angles around Sil is 307,8vhich is similar to that in THF solvated
lithiosilanes® The Sit-F distance 1.70 A is relatively lorfy,
indicating a weaker SiF bond inl than that in fluorosilanes.

Silylenoid 1 was studied computationalf? using density
functional theory (DFT}% The calculated structure of (see
Supporting Information) is similar in its general shape to the
experimental structure, but there are significant differenceSin-
F) (1.70 A (exptl), 1.84 A (theor}}2andr(F—Li) (1.77 A (exptl),
1.82 A (theor)). The calculations show that the tricoordinate
silylenoid 1 is by 4.8 kcal/mol lower in energy than its tetraco-
ordinate isomer (ESi)FSiLi-3THF (RsSi = t-Bu,MeSi), 4,110 in
which r(Si—F) = 1.75 A andr(Si—Li) = 2.76 A2

The NMR 6(?°Si1) chemical shift ofl (107 ppm§ is shifted
significantly downfield compared witht-Bu,MeSiy,HSIF (22.5
ppm)}314(t-Bu,MeSi)SiH, (—120 ppm), andt{Bu,MeSi)HSiLi-
3THF (—190 ppm)!> The measured(?°Sil) of 1 is in very good
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Figure 1. ORTEP drawing ofl.. Hydrogen atoms and GHjroups ort-Bu
are omitted for clarity. Selected bond lengths (A): SHL.1.698(3), F-Li
1.773(7), Si+-Si2 2.412(14), sit Si3 2.402(14). Selected bond and dihedral
angles (deg): Si2Si1—-Si3 104.5(5), Si2Si1l—F 100.8(10), Si3-Si1—F
102.3(12), SitF—Li 135.2(3), Si2-Sil—F—-Li 110.8, Si3-Sil—F—Li
141.7.

agreement with the calculafé®ds(?°Si1) (102 ppm using the X-ray
coordinate¥? indicating that the silylenoid structure probably
persists in THF solutiof®

The calculated charge distribution (NPAY shows thatl,!8
which is overall neutral, is highly polarized; the positive charge
(0.88 el.) is located on the {3THF fragment, while most of the
negative charge resides on F{.74 el.) with—0.14 el. residing
on the RSi fragment (charge on Si +0.14 el.). The NPA charge
distribution in the tetracoordinate isom#is similar: q(R;Si:) =
—0.22; q(F)= —0.69; andq(Li-3THF) = +0.88. The calculated
Si—F, Si-Li, and F-Li Wiberg bond orders (WBG52" in 1 are
0.38, 0.06, and 0.02, respectively, reflecting a covalent3ond
(although weaker than that in §8i);SiF (WBO = 0.55,r(Si—F)
= 1.66 A, at B3LYP/6-313G(d,p)) and no covalent bonding
between StLi (or F—Li). In 4, the Si-F, Si—Li, and FLi WBOs
are 0.43, 0.13, and 0.0, respectively, reflecting a higher covalency
in the Si-F and Si-Li bonds in comparison td. The charge
distribution and the WBOs ifh point to a structure with anJSiF-
anion attracted to a (E3THF)* cation.

Analysis of the resonance structures (RS) of the fully optimized
(at B3LYP/6-311-G(d)) (Me;Si),SiFLi-3Me,O 1' (a model of1,
r(Si—F) = 1.84 A), using NRT°¢ calculations, shows thdta is
the most prominent RS df. The localized NBO¥d of 1'a show
a lone pair orbital on the central Si atom with an occupancy of
1.53 el. and a highly polarized -SF NBO, in which 90% of the
charge density resides on F and only 10% resides on Si. A minor
contributing RS isl'b which consists of a silylene fragment and
FLi-3Me&0.2° The NRT bond ordetge of 1' indicate its high
ionicity; i.e., the Si-F BOs are 0.93 (total) and 0.76 (ionic), while
the Si-Li and FLi bonds are entirely ionic. In summary, based
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on the calculations] is best described by REa with a minor

contribution of1'b.2*
@ —‘ highly ionic Q 9
\\\\\\“‘ b
/ FLis» 3Me,0

\\\“7 }_
1'b

1'a

Lis 3Me,0

The calculated energy for the dissociatiorldd R,Si: and FLt
3THF isAG?®% = 19.5 kcal/mol AH2% = 33.5 kcal/mol), consistent
with the small contribution of an RS analogousltb.??

1 exhibits versatile reactivity, in line with its silylenoid structure.

It reacts as a nucleophile with MeCl, P$&iCl, water, and methanol
(Scheme 1, pathi). It reacts as an electrophile with MeLi (Scheme

Scheme 1
. (iv)hvorA , % i i) R' R
R,Si=SiR, <e—r RySi L 3THF—>(1) RX sti/
6 -LiF 1 F \F
(iii) -BuLi, (iiyMeLi ~ R'=Me, PhHSi; X =Cl
Li or Na R'=H; X =0H, OMe
L) .
R,SiM-nTHF L nTHF

5a,M=Li RoSig
5b, M =Na Me R =-Bu,MeSi

1, path ii). Witht-BuLi in THF 1 is a precursor ofr-lithiosilyl
radical 5a%® (Scheme 1, path iii). The silylenic-type reactivity is
revealed when is stirred with lithium or sodium powder in THF
to yield o-lithium (58) or a-sodium Bb) radicals, respectively
(Scheme 1, path iii¥3 When a THF solution ofl is kept under
sunlight at room temperature for a week or when salid heated
to 120 °C (0.5 h) disilene6?* is formed (Scheme 1, path iv),
probably via dimerization of FSi:.

In summary, we have isolated the first fluorosilylenoid, deter-
mined its molecular structure by X-ray crystallography and its
electronic structure by DFT calculations, and demonstrated its
versatile reactivity. We are continuing to explore this interesting
new class of reactive intermediates.
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